

MY
COMPUTER

End to End Dynamic Round Robin
(E-EDRR) Scheduling Algorithm
Utilizing Shortest Job First Analysis

Presented by Renz Rallion T. Gomez,
Christopher M. Bermudez,
Vily Kaylle G. Cachero &
Eugene G. Rabang

Abstract
The End to End Dynamic Round Robin (E-EDRR) Scheduling
Algorithm Utilizing Shortest Job First Analysis functions as a
method of queuing tasks that the CPU will process. It is an
improved Round Robin that uses of Shortest Job First to compare
tasks and the end to end method to execute tasks. It aims to reduce
these three metrics: (1) the time it takes to complete tasks, (2) the
time it takes for the ready-for-processing tasks to be executed, and
(3) the number of times the CPU switches between tasks.

To verify these aims, test cases were conducted that showed the
comparative results between E-EDRR and the original algorithms,
(Round Robin and Shortest Job First). In the findings, it satisfied the
expectations by getting lower scores than both of the original
algorithms from all the metrics in all test cases except in one where
the Round Robin’s variables favor the conditions of the case. It was
concluded that E-EDRR has achieved its goal and proved its
theoretical acquisitions.

Abstract

Introduction
The function of Scheduling Algorithms in Operating Systems is to
provide an established method of queueing tasks/instructions for
the Central Processing Unit (CPU) to process. Some basic
scheduling algorithms:

Scheduling Algorithms are First Come First Serve (FCFS),
Shortest-Job-First (SJF), Priority Scheduling, Round Robin (RR),
Multilevel Queue Scheduling [1]. These algorithms are globally
used in a wide variety of ways.

End to End Dynamic Round Robin
The End to End Dynamic Round Robin (E-EDRR) Scheduling
Algorithm Utilizing Shortest-Job-First Analysis aims a better time
interval in producing results. It is an improved Round Robin
scheduling that is redesigned by using the Shortest Job First
analysis to queue tasks. The algorithm identifies the tasks by
shortest to longest burst time.

Review of Related Literature

Most of the improved CPU scheduling algorithms are focused on the
improvement of the implementation of the available resources. These
resources are always of the consideration of the user and is capable of
determining the criteria in measuring the various algorithms’ performances.
These criteria include:

Turnaround Time: The time required to complete a process (wall clock time).

Waiting Time: The time that a process spends in the queue before being executed.

Context Switch: The process of switching tasks/thread, given that the current process
is saved so it can be continued later on

Review of Related Literature

These are the some most popular CPU scheduling Algorithms existing:

1.The First Come First Serve (FCFS) or also known as First In First Out

2.Shortest Job First (SJF)

3.Round Robin (RR)

4.Best Job First (BJF)

Pseudo Code vs Java Code

Pseudo Code

Let TQ be the time quantum.

Let NA be the newly arrived
processes.

Let Q1 be the ready queue

Java Code

int tq = 0;

int[] NA = { };

int[] q1 = { };

1. if(NA == true) {

enqueue NA to Q1,

repeat step 1

} else

proceed to step 2;

static int[] getTasks() {

 length = s.nextInt();

 int[] a = new int[length];

 for (int i = 0; i < length; i++) {

[i] = s.nextInt(); }

 return a; }

Pseudo Code Java Code

2. if(Q1 != empty) {

 sort tasks according to BT,

 proceed to step 3

 } else

proceed to step 1;

static int[] sortArray(int[] NA) {
 int sorting = 0;
 while (sorting < NA.length) {
 if (sorting > 0) {
 quickSort(NA, 0, sorting);
 turnaroundtime++;}
 sorting++;}
 return NA;}

Pseudo Code Java Code

3. Determine the TQ

by using [equation 2]

equation 2: TQ = current shortest
task’s burst time

static void executeTasks(int[] q1) {
...
tq = q1[shortest];
...

}

Pseudo Code Java Code

5. if(longest task != complete) {

Longest task’s progress

is saved and its burst time

Is reduced by TQ

} else

proceed to step 6;

static void executeTasks(int[] q1) {
while (shortest <= longest) {
…
 lt = q1[longest];
 bt = lt - tq;
 q1[longest] = bt;
...

}

Pseudo Code Java Code

 4. if(Q1.length != 1) {

execute shortest task,

execute longest task

 } else

execute shortest task;

static void executeTasks(int[] q1) {

int shortest = 0, longest = length-1;

while (shortest <= longest) {

…

 q1[shortest] = 0;

shortest++;

…

 q1[longest] = bt; ...

 if (q1[longest] == 0) longest--;

… } }

Pseudo Code Java Code

6. Dequeue completed tasks

 from Q1 and proceed to

 step 1

static void main(String[] args) {
int[] NA;
…
NA = getTasks();
...
int[] a = sortArray(NA);
executeTasks(a); }

Pseudo Code Java Code

Test Cases

All test cases were performed with the consideration of the following assumptions:

1. Processes are executed in a single processor.

2. Processes are CPU bound.

3. Number of processes and BTs are initially known.

4. SJF and RR are used as benchmarking algorithms.

5. RR will have a TQ of 25 in respect to the test cases’ average BT.

Test Cases

Test Case 1: We assumed five (5) processes wherein
they have equal BTs (as shown in Table 2 below)

Table 3 shows the comparative results
of E-EDRR against the benchmarking algorithms.

Task Burst Time

T0 25

T1 25

T2 25

T3 25

T4 35

[Table 2: Test Case 1]

Algorithm TTAT ATAT AWT CS

E-EDRR 137 27.4 20 5

SJF 149 29.8 50 5

RR 125 25 50 5

[Table 3 Test Case 1 result]

Test Cases

Test Case 2: We assumed five (5) processes
wherein their BTs in increasing order (as shown in
Table 4 below).

Table 5 shows the comparative results of
 E-EDRR against the benchmarking algorithms.

Task Burst Time

T0 19

T1 22

T2 25

T3 28

T4 31

[Table 4: Test Case 2]

Algorithm TTAT ATAT AWT CS

E-EDRR 145 29 30.6 5

SJF 149 29.8 44 5

RR 175 35 90 7

[Table 5: Test Cae 2 result]

Test Cases

Here's the Graph of the Results:

Test Cases

Test Case 3: We assumed five (5) processes
wherein their BTs in decreasing order (as shown in
Table 6).

Table 7 shows the comparative results of
 E-EDRR against the benchmarking algorithms.

Task Burst Time

T0 31

T1 28

T2 25

T3 22

T4 19

[Table 6: Test Case 3]

Algorithm TTAT ATAT AWT CS

E-EDRR 145 29 30.6 5

SJF 149 29.8 44 5

RR 175 35 90 7

[Table 7: Test Case 3 result]

Test Cases

Test Case 4: We assumed five (5) processes
wherein their BTs in random order (as shown in
Table 8).

Table 9 shows the comparative results of
 E-EDRR against the benchmarking algorithms.

Task Burst Time

T0 27

T1 21

T2 29

T3 34

T4 24

[Table 8: Test Case 4]

Algorithm TTAT ATAT AWT CS

E-EDRR 155 31 33.2 5

SJF 159 29.8 47.8 5

RR 200 40 100 8

[Table 9: Test Case 4 result]

Test Cases

Here's the Graph of the Results:

Test Cases

Test Cases

Here is the Graph of the Overall Results:

DISCUSSIONS

Discussions

● E-EDRR has better performance with various Burst Times.

● RR has better TTAT in Test Case 1. Why?

● E-EDRR had consistent number of CS as the same as the SJF, but

ironically, not RR as its parent concept.

Conclusions &
Recommendations

Conclusions
● E-EDRR improves the CPU scheduling by reducing turnaround and

waiting time without compromising in context switching.

● Results are align in conceptual analysis of the algorithm before

actual testing

● We had confirmed that the algorithm’s procedural execution is

better.

Recommendations

● E-EDRR can show better performance

by threading implementation

● Test cases includes = Arrival Time (AT)

● Other Algorithms and stuffs can be compared to original

algorithm

End to End (E-EDRR) Scheduling Algorithm
Utilizing Shortest Job First Analysis
2020 3rd International Conference on Computers in Management and Business (ICCMB2020)

Renz Rallion T. Gomez
Author/Student

University of the Cordilleras
Baguio City, Philippines

decemberavis19@gmail.com

Christopher M. Bermudez
Author/Student

University of the Cordilleras
Baguio City, Philippines
tupz0799@gmail.com

Vily Kaylle G. Cachero
Author/Student

University of the Cordilleras
Baguio City, Philippines

cacherokaylle@gmail.com

Rey Benjamin M. Baquirin
Co-Author/Professor

University of the Cordilleras
Baguio City, Philippines
reybenbaq@gmail.com

Eugene G. Rabang
Author/Student

University of the Cordilleras
Baguio City, Philippines
raterkracks@gmail.com

